For quite some time, there was a running joke that “serverless” was just for converting images to thumbnails. That’s still a great use case for serverless, of course, but since AWS released Lambda in 2014, serverless has definitely come a long way. Even still, newcomers to the space often don’t realize just how many use cases there are for serverless. I spoke with Gareth McCumskey, a Solutions Architect at Serverless Inc, on a recent two part episode (part 1 and part 2) of Serverless Chats, and we discussed nine very applicable use cases that I thought I’d share with you here.
Tag: aws lambda
Throttling Third-Party API calls with AWS Lambda
In the serverless world, we often get the impression that our applications can scale without limits. With the right design (and enough money), this is theoretically possible. But in reality, many components of our serverless applications DO have limits. Whether these are physical limits, like network throughput or CPU capacity, or soft limits, like AWS Account Limits or third-party API quotas, our serverless applications still need to be able to handle periods of high load. And more importantly, our end users should experience minimal, if any, negative effects when we reach these thresholds.
There are many ways to add resiliency to our serverless applications, but this post is going to focus on dealing specifically with quotas in third-party APIs. We’ll look at how we can use a combination of SQS, CloudWatch Events, and Lambda functions to implement a precisely controlled throttling system. We’ll also discuss how you can implement (almost) guaranteed ordering, state management (for multi-tiered quotas), and how to plan for failure. Let’s get started!
How To: Use SNS and SQS to Distribute and Throttle Events
An extremely useful AWS serverless microservice pattern is to distribute an event to one or more SQS queues using SNS. This gives us the ability to use multiple SQS queues to “buffer” events so that we can throttle queue processing to alleviate pressure on downstream resources. For example, if we have an event that needs to write information to a relational database AND trigger another process that needs to call a third-party API, this pattern would be a great fit.
This is a variation of the Distributed Trigger Pattern, but in this example, the SNS topic AND the SQS queues are contained within a single microservice. It is certainly possible to subscribe other microservices to this SNS topic as well, but we’ll stick with intra-service subscriptions for now. The diagram below represents a high-level view of how we might trigger an SNS topic (API Gateway → Lambda → SNS), with SNS then distributing the message to the SQS queues. Let’s call it the Distributed Queue Pattern.

This post assumes you know the basics of setting up a serverless application, and will focus on just the SNS topic subscriptions, permissions, and implementation best practices. Let’s get started!
Serverless Tip: Don’t overpay when waiting on remote API calls
Our serverless applications become a lot more interesting when they interact with third-party APIs like Twilio, SendGrid, Twitter, MailChimp, Stripe, IBM Watson and others. Most of these APIs respond relatively quickly (within a few hundred milliseconds or so), allowing us to include them in the execution of synchronous workflows (like our own API calls). Sometimes we run these calls asynchronously as background tasks completely disconnected from any type of front end user experience.
Regardless how they’re executed, the Lambda functions calling them need to stay running while they wait for a response. Unfortunately, Step Functions don’t have a way to create HTTP requests and wait for a response. And even if they did, you’d at least have to pay for the cost of the transition, which can get a bit expensive at scale. This may not seem like a big deal on the surface, but depending on your memory configuration, the cost can really start to add up.
In this post we’ll look at the impact of memory configuration on the performance of remote API calls, run a cost analysis, and explore ways to optimize our Lambda functions to minimize cost and execution time when dealing with third-party APIs.
Lambda API: v0.9.2 Released
Lambda API: v0.9.1 Released
Takeaways from ServerlessNYC 2018
I had the opportunity to attend ServerlessNYC this week (a ServerlessDays community conference) and had an absolutely amazing time. The conference was really well-organized (thanks Iguazio), the speakers were great, and I was able to have some very interesting (and enlightening) conversations with many attendees and presenters. In this post I’ve summarized some of the key takeaways from the event as well as provided some of my own thoughts.
Note: There were several talks that were focused on a specific product or service. While I found these talks to be very interesting, I didn’t include them in this post. I tried to cover the topics and lessons that can be applied to serverless in general.
Update November 16, 2018: Some videos have been posted, so I’ve provided the links to them.
Audio Version:
What 15 Minute Lambda Functions Tells Us About the Future of Serverless
Amazon Web Services recently announced that they increased the maximum execution time of Lambda functions from 5 to 15 minutes. In addition to this, they also introduced the new “Applications” menu in the Lambda Console, a tool that aggregates functions, resources, event sources and metrics based on services defined by SAM or CloudFormation templates. With AWS re:Invent just around the corner, I’m sure these announcements are just the tip of the iceberg with regards to AWS’s plans for Lambda and its suite of complementary managed services.
While these may seem like incremental improvements to the casual observer, they actually give us an interesting glimpse into the future of serverless computing. Cloud providers, especially AWS, continue to push the limits of what serverless can and should be. In this post, we’ll discuss why these two announcements represent significant progress into serverless becoming the dominant force in cloud computing.
Lambda API: v0.8.1 Released
Managing MySQL at Serverless Scale
Last Updated: March 30, 2020
“What? You can’t use MySQL with serverless functions, you’ll just exhaust all the connections as soon as it starts to scale! And what about zombie connections? Lambda doesn’t clean those up for you, meaning you’ll potentially have hundreds of sleeping threads blocking new connections and throwing errors. It can’t be done!” ~ Naysayer
I really like DynamoDB and BigTable (even Cosmos DB is pretty cool), and for most of my serverless applications, they would be my first choice as a datastore. But I still have a love for relational databases, especially MySQL. It had always been my goto choice, perfect for building normalized data structures, enforcing declarative constants, providing referential integrity, and enabling ACID-compliant transactions. Plus the elegance of SQL (structured query language) makes organizing, retrieving and updating your data drop dead simple.
But now we have SERVERLESS. And Serverless functions (like AWS Lambda, Google Cloud Functions, and Azure Functions) scale almost infinitely by creating separate instances for each concurrent user. This is a MAJOR PROBLEM for RDBS solutions like MySQL, because available connections can be quickly maxed out by concurrent functions competing for access. Reusing database connections doesn’t help, and even the release of Aurora Serverless doesn’t solve the max_connections
problem. Sure there are some tricks we can use to mitigate the problem, but ultimately, using MySQL with serverless is a massive headache.
Well, maybe not anymore. 😀 I’ve been dealing with MySQL scaling issues and serverless functions for years now, and I’ve finally incorporated all of my learning into a simple, easy to use NPM module that (I hope) will solve your Serverless MySQL problems.